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THE TEMPERATURE CALCULATION OF AN ORTHOTROPIC PLATE
WITH TRANSVERSE SHEAR TAKEN INTO CONSIDERATION

S. M, Durgartyan
(Yerevan)

1. Statement of the problem. We wlll examlne a rectangular

orthotropic plate of constant thickness h referred to rectangular
carteslan coordinates, We wlll combine the coordinate plane xoy with
the average plane of an undeformed plate, we will direct the coordinate
axes along the principal directlons of elastlclty of the plate mate-
rial, and we will set the coordinate origin at one of the apexes of the
plate. The deformatlion factors Ei’ “ij’ GiJ and the thermal coef-
ficlents of expansion By wlll be considered as given functions of
temperature T, changling according to a known law,

Here, as usuzal, Ei and ﬁi are, respectlvely, Youngt!s modulus ani
the thermal coefficlent of expanslon along the coordilnate axls 1i; the
Polsson coefflcient My g characterlzes contractlion 1in the direction j
during expansion 1n directlon 1; the shear modulus GiJ characterlzes
the change 1n angle between principal directions i and J.

We wlll assume that the relative deformation throughout the plate

1s condltlioned by free thermal expansilon
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e, =8,T (1.1)

Using as our basis a theory developed by S. A. Ambartsumyan [1],

we will conslder that the tangential stresses Tyz and Tyz can be

represented as
WA@Y, T, =/ () ¥ y) (1.2)
where ¢(x,y) and ¥(x,y) are unknown functions, fi(z) are given func-

tions which characterize the law of change of tangential stresses

T,, &nd Tey throughout the plate; fi( + h/2) = 0.

2. Derilvation of the basic equations. Using the accepted rep-

resentation of tangential stresses (1.2), having integrated over z
the third differential equation of equilibrium of a volume element
(assuming absence of volumetric fo.ces) and having designated

2

Fi(‘)"S/‘(z)dx (2.1)

we will obtain

c{(z,r,:)=co(::, y)—F,(:)_‘;.ag-—'-Fg(z)‘;—: (2.2)

where co(x,y) is the integration function describing the distribution
of normal stresses along the average plane of the plate (z = 0) and

1s determined from the conditions

6, (x, v, £h/2)=0 (2.3)

Taking into account (2.3), from (2.2) we obtain the value of the

integration function

won= A e n e ) 42

FID-TT-63-529/1+2+4 T 2=




and also the differentlal dependence

o

which, as we can easlily see, 1s the third equation of equilibrium of

N

)= A ) - - ] o (2.)

the plate element [1].
Using the found value of the integration functlon oo(x,y) and

having set
am ) a-g)] o emne (2.5)
for stress oz(x,y,z) we obtain the expression
o, (=, v, z)=[c1—-Fx(=)1—‘3—('x3-+ lC-:—Ft(‘)lg—} (2.6)

We know from earlier articles ([4], pp. T4-75; [1], pp. 315-316)
that it 1s advantageous to accept the functions fi(z) in the form

1) = () = () = 3= (5= =) (2.7)

From (2.1), by virtue of (2.7), we.obtain
z [ ht F
F(=)=fx(z)-r.(s)=T(T—T)

Thus, taking into account (2.4)-(2.6), we will have ¢y = ¢y = 0,

(x,y,2z) = 0.

It 18 easlly ascertained that stress o, 1s equal to zero in all
cases when the functions fl(z) and fa(z) are even functions of the
coordinate z and are equal to each other,

From this, in subsequent calculations we wlll set o, = 0.

On the basis of Franz Neuman's hypothesis [2], from the gener-

alized Hooke law we have
o, = DBue, + Bueey + QiT, 8, = DBige_+ Bye, + QuT

(2.8)

’ txv = Buexu, fv' =2 B“C‘", Tﬂ - B.leu
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where, as usual (for example, [1]),

E

E‘

E

E

-"PV-\’- ll“l‘ll

B — D. — =
n= Bxls 2= Bagbyn’ By

. E,
Q= — -‘-—_-_—“:mv—: (Bg -+ ”y}y)l

By=G,, Du=G,,

E
Q& = — T (MBetBy)

U= Babye . =Py

D“=Gw

Using the known relations between displacements and deformations

and also taking into account (1.1), (1.2) and the last two equations

of (2.8), for projections of displacement u, ., uy and u, we obtain

ow [/
U, e U~ - w
- 5= lx-{-qll",, u, = v—:__av—lv-t}-w‘., u mw I (2.10)
Here
umsu o vemu, [ Ve Uy |re
0 ? 4 z
[3d v, N nomos v ra,‘
¢ w=a (oY, A'-‘P‘AM.. PRI FRT A N 8‘=\T(ll
2 ‘ (2.1}
. ~ - Yy (1)
v -‘—..- Le€t iy oy, '\x"‘.";‘d
a
o corralas fox waLn stresgs;
-
Cretg z..‘. da
dy
i ., .
‘ - - 1 Y L .
. s - ; U
- v
.- - K r gi, Ay
- - - P o e e
g 31"' o }
PRRRTARR I M2 lnuwt 1Tl 88 AT is aetr -
PV T LT Ly T st s and AR sy mweans of the rasic

(2.9)



unknowns u, VvV, W, 9, and ¢
A
T, = §c£13=cu_—+c ——K“T

) t 2
- /3

Ku -——— + Cm"Q +

9
+ Cin"¥ + Can %% + ij\l"‘ — Ry — ¥ + 010

M
TV- §nd dl-CnT-*-c” Ku— T+cl!l Q-+

+ Cn¥ + Cin %??-}- Cm'g—:'—ﬂm"—ﬂmv+°a

ha w
S - ‘ T,yds = Cus (T""T) Mub;b-y'-l-cqu"l'
-hs

oo d .
+ Cu™® + Cun G + Con g — Hyg* = Hy

N, = hi;fndl-wa (—}) N, = Y %5 = 29F (_’i_)

-~ N3
, na (2.13)
My &nds‘d‘-xu%ﬁ-Ku-g—;-—Dn-g:,—’-—Du%-i-xm’?ﬁ'

a
+Km"¢+Km'a%+Km%—3m:—km"+°“
M == czdz-xu-ei-l-xua' —Dlia'w—pna’w + Ko +
v v oz oy =) F
=Y .
Il
+Ksa"¢+xm’a%+Ku%—ﬂm’—3mv+°n

s
Hm S < ui:—K..(a—"+ g:) Zpu%-‘-xm"@'i'

- hf2 ,

+Kon"P+Km%%+Km%—H F—H VY
Here we use the designations

LT M2
Cy= ’i‘B‘d:, Ko -L Bsdz, D = Ai.s@w. C,= ‘ B ds
- - -

K, B Cc.» 5. a  krm ¢ B2
wm | s O | B K= | Bl (2.14)
= -2

<

- A3
(t-ﬂ 12, 22,66, j=1,2; v=2x,y)

'(' 2y gy (imzy =y 5 ve0,1; isk))

~hn
’§‘ ,ol.dz (i=11,12,22 vezy j=0,1)
i

L'
By ‘ QuTs!ds (i=1,2 j=0,1)
—hse
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Introducing (2.13) into the equations of equilibrium of the plate

element, for determining the five unknowns u, Vv, W, ¢, and ¥ we obtain

the following system of five differential equations with variable coef-

ficients:

[3%‘(01;%) 6y (C“ By ]"+['§'a; Cu aJ +0y cu;‘)]
. 9 a?
Tt ) (o

+[%'(culT+cn| TG‘)+%(C“1T+C‘“ 8y )]9‘*’

+ [ (6 2y + 0w 37) + 35 (Con % +.Cr 72y =

6 (Ruo* + Rng —Olo) ] (wa + }lmv)
oz ~

(2.15)



For convenience, the designation %’i—-%}-o i8 used in (2.15)-
(2.19); from this,
S 8 (0 ] 9 (0 AN .
) =mlm) -  wl@F)=wlw -5t

3. Certain particular cases. The case when the temperature

changes only throughout the plate, T = 'I‘(z) . In the examined case the

system of equations (2.15,-(2.19) 1s simplified and reduces to the
following system of five uniform differentlal equations with constant
coefflcients

) o » » »
(O 5+ Cua 3o ) (Con -+ Can) gy — [ K55 + (K + 2Ket) s | 0+

(3.1)
: »
4 (Cun g + Con 335 ) @+ (Coma + Comd g = 0
o . 2
(c;.+c..)-‘%y-+(Cu%+ca@.-)v—[(xn+uu)m+xaay.]w+
' ‘ » a
+ (Cin + Cu\)%+(cm§;+cm'§'y?' v=0 (3 2)
do
= (3.3)
a% » »
(Ku%+Ku‘%?)"+(Ku+lfn)'a‘,’5:,7—[0n'a;+(nlg+2Du)5‘;5;§]"+
‘ . h y . : & ol*
+[Klll'30";a'+xul‘§;‘n‘—”(T)]?+(Klﬂ+xgu)5;'5%-0 (3 )
& ' »
o o 5+ ) [ 200 855 ]
' (3.5)

bt o 25 [ R (B0

The case when the temperature changes only along the coordinate

axes x and ¥, T = T(x,y). In this case we have

BymBi(z,y), Qy=Qj®.y)  (i=11,1222,44,55 00 j=1,2)

9B, T 8 (3.6)
I'=,Ts, la"’_;—" (:; )' ’v“%".—%&

-T=



Using (2.7), from (2.1) and the last two equations of (2.11) we
vbhtain

T IS et PP (L) PRV S R (3.7)

Taking into account (3.6) and (3.7), from (2.14%) we will have

K . B, ps
C,=mBh, Di=B 17, Ki=Cy=Cy=C=Cy=0, K, "'IT:'TE
By p L NERR.L 1\ A
Fammam AR (m)me K=o ()t
(i=11,12,22,66; vaz,y) (3-8)

Bh & (8,T) v Bk #(B,T)
W= e =" “ovo; + Ry mH =0
((=11,12, 22, vz, y; jmuy, 2)
0= Q,Th, 6, =0 (im=1,2)

Inserting (3.8) into (2.15)-(2.19) we obtain the following system
of differential equations with variable coefficients

[ (o )+ 5 ) 3 0 55 5 (o )]
B,k &(8,T) + (Bt 28u) wPE.T)  5(Q:T) (3.9)
=TuT T ‘ % Err B

[61 (B“ 6y)+ dy (B" :z)]"+[0= (B“ 0‘1)"' By (D" :v)]
Bid @B,T) (Bt 284) 12 (3, T)  9(Q,T)
2% “ep T p7A 3y~ oy

(A2
0:+6y =0

[ai (”" ::s‘*"’" 0y‘)+20y (B“o_z?)]""*' ,
i e I
+h_o{‘oi[”“ a_, u.. dy J'*' an [B“ ai (ul.. aax )]}\p-o
—[2 32 (pu 55 + 35 (50 2 +”" 7)] v
‘*‘46{76‘[”“ a5 (5 o) |+ o7 [Ba 2 (7 ) ]}""‘
+{io - % [0 3 (G 7 ]+ 15 27 e (32 )| = 1} wmo

The system of equations (2.15)-(2.19) was broken down into two
systems: (3.9) (plane problem) and (3.10) (bending without expansion-

(3.10)

contraction of the average plane).
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4, Cylindrical bending of a plate. Having directed axis x along

the span of the plate, from (2.15)-(2.19), taking into account (2.7),

we obtain

d du d [, dw d d d° d (Rye™ —0
E(Cu -‘T;) - (llu 7,7.) +2= (Cm-d;+0m"ﬁ) ? = 20w —0u) u;,, )
do/dz =0 ' (4.1)
d du d ) d (. d d° » d (R —01)
3 (’fu?;) - (Dn—.rzf) + [2; ("mz;+"m"7;°‘) —Tz]¢=—"——d=

From the second équation of (4.1) we £find ¢ = const. Considering
this, and having integrated once the first and third equations of

(4.1), we will have

d d*w
Cu ﬁ—xm'@' = — Cin*¢ + Ry — 0+ G (4.2)
d d*w h
Kn'd—:'—-DanT=—K1n"¢+_;2l=+nmx—eu+cl (4-3)

where C1 and C. are constants of integration,

2
For definiteness, having taken C,;D,, - K112 # 0, (4.2) and (4.3)

we will obtain
d 1 ., hzx
.d_:. =TCubDu—Ky* [q’ (K“Km‘ —~DyCiy* — K T) +
+ CyDy — Cokny + D Rie™ — KnyRan®™ — Do + Kuan]

d*w 1 h3x
T = T 9 (O — KuCu® = Cu ) +

4 C 1Ky — Colu + Ko™ — Culti™ — Kubio + Cnon]

(4.4)

Integration (4%.4) does not present any great difficulties for the
nown law of temperature change and for given functions which express
the dependence of the deformation factor and the thermal coefficient
of expansion on temperature.

The slx constants of lntegration which enter into expressions ¢,

u and w are determined from the conditions that the plate 1is attached

Q-



along the sides x = 0 and x = 1., [There are three constants of integra-
ton ¢, C; and C, in (4.4) and three also appear as a result of
integration of (4.4).]

Example of the calouwlption. We will examine a ocase when seroc

tempe'rature is maintained at the lower surface of the plate, while

at the upper surface the temperature changes linearly from 0° to %00°,
i.eo,

T-ﬁwim l-h,T-O when -—-’L
A T (4.5)

We can easily see that the temperature function

reww¥ (i) (+.6)

satisfies the known equation of heat transfer and the boundary con-

ditions (4.5).
We will take [5]

B, G,
T =T = 10005, fe =B, =pw=const, (4.7)
By ™ 1 = OBBL, i, = jig == cODSL -7
Introducing (4.6) into (4.7) and introducing new variables
n-%l 0-;‘%‘ (4'8)

from (2.9), (2.14) and (4.4) we will obtain the values of the first
derivative of displacement u and the second derivative of displace-
ment w with respect to varilable w, which contain logarithmic terms.

Takine into account the boundedness of variable w
o< /10 V

&7 wwer the condition 1 > x > 0] and given the accuracy of whw
«7lA0%. we can substantially simplify the obtained resuits.
sz 2xpeaded the logarithmice functions into power serias aad

PRI P -2 2 ~10=



having limited ourselves to an accuracy of 1 + mu % 1, after integra-

tion we will obtain
Umy (0, P, clp cﬂ. c_l). w= '(”o (-5 clo c.u c‘o c!) (ll' o 9)

Introducing (4.2) and (4.9) into (1.2), (2.10), (2.12), and (2.13),
we can easlly find the stresses, displacements, forces, and moments
expressed by constants ¢ and C, (L=1, 2,...., 5), the values of
which are determined from the conditions that the plate is attached
at the edges x = 0 and x = } (correspondingly, w = 0 and w = 0.1).

We wlill examine a case when along the sides x = 0 and x = 7 where
N =2 = 0, the following conditions are satisfied.

u‘-u‘-%-o (4.10)

From (2.10), (4.9), and (%.10), taking into account the bounded-
ness n(|n| < 1), we will have
CrmCemCim0,  @=— (oo A

C;-—””+o‘“’t.8'k c.__oms-a-om Ba (4.11)

Here .

Obviously from (4.11), in the case h* = 0.114-1,00, the correc-
tion resulting from taking into account transverse shear when deter-
mining C, can reach 5-44% .

Introducing (4.4) into (2.13), for the deflecting moment M, we
will have

M, = 0.0833¢Ms +- C,

FTD-TT-63-529/1+2+4 -11-



from which it is evident that taking into account the influence of
~ansverse shear can in certain cases very substantially influence

the calculated values (for example, the value of the deflecting moment
M, in oross section x = 0 in the menticned example) .

Submitted July 10, 1961
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